Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 448
Filtrar
1.
PLoS Pathog ; 20(4): e1012139, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38578790

RESUMO

Alpha herpesviruses naturally infect the peripheral nervous system, and can spread to the central nervous system, causing severe debilitating or deadly disease. Because alpha herpesviruses spread along synaptic circuits, and infected neurons exhibit altered electrophysiology and increased spontaneous activity, we hypothesized that alpha herpesviruses use activity-dependent synaptic vesicle-like regulated secretory mechanisms for egress and spread from neurons. Using live-cell fluorescence microscopy, we show that Pseudorabies Virus (PRV) particles use the constitutive Rab6 post-Golgi secretory pathway to exit from the cell body of primary neurons, independent of local calcium signaling. Some PRV particles colocalize with Rab6 in the proximal axon, but we did not detect colocalization/co-transport in the distal axon. Thus, the specific secretory mechanisms used for viral egress from axons remains unclear. To address the role of neuronal activity more generally, we used a compartmentalized neuron culture system to measure the egress and spread of PRV from axons, and pharmacological and optogenetics approaches to modulate neuronal activity. Using tetrodotoxin to silence neuronal activity, we observed no inhibition, and using potassium chloride or optogenetics to elevate neuronal activity, we also show no increase in virus spread from axons. We conclude that PRV egress from neurons uses constitutive secretory mechanisms: generally, activity-independent mechanisms in axons, and specifically, the constitutive Rab6 post-Golgi secretory pathway in cell bodies.


Assuntos
Alphaherpesvirinae , Herpesvirus Suídeo 1 , Pseudorraiva , Animais , Corpo Celular/metabolismo , Proteínas do Envelope Viral/metabolismo , Axônios , Alphaherpesvirinae/metabolismo , Neurônios , Herpesvirus Suídeo 1/metabolismo , Pseudorraiva/metabolismo , Exocitose
2.
Viruses ; 15(12)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38140525

RESUMO

Alpha herpesvirus infections (α-HVs) are widespread, affecting more than 70% of the adult human population. Typically, the infections start in the mucosal epithelia, from which the viral particles invade the axons of the peripheral nervous system. In the nuclei of the peripheral ganglia, α-HVs establish a lifelong latency and eventually undergo multiple reactivation cycles. Upon reactivation, viral progeny can move into the nerves, back out toward the periphery where they entered the organism, or they can move toward the central nervous system (CNS). This latency-reactivation cycle is remarkably well controlled by the intricate actions of the intrinsic and innate immune responses of the host, and finely counteracted by the viral proteins in an effort to co-exist in the population. If this yin-yang- or Nash-equilibrium-like balance state is broken due to immune suppression or genetic mutations in the host response factors particularly in the CNS, or the presence of other pathogenic stimuli, α-HV reactivations might lead to life-threatening pathologies. In this review, we will summarize the molecular virus-host interactions starting from mucosal epithelia infections leading to the establishment of latency in the PNS and to possible CNS invasion by α-HVs, highlighting the pathologies associated with uncontrolled virus replication in the NS.


Assuntos
Alphaherpesvirinae , Latência Viral , Humanos , Axônios , Replicação Viral , Proteínas Virais
3.
Viruses ; 15(10)2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37896884

RESUMO

Cutaneous plantar papillomas are a relatively common lesion of wild psittacine birds in Australia. Next-generation sequencing technology was used to investigate the potential aetiologic agent(s) for a plantar cutaneous papilloma in a wild rainbow lorikeet (Trichoglosis moluccanus). In the DNA from this lesion, two novel viral sequences were detected. The first was the partial sequence of a herpesvirus with the proposed name, psittacid alphaherpesvirus 6, from the Mardivirus genus of the family alphaherpesviruses. This represents the first mardivirus to be detected in a psittacine bird, the first mardivirus to be detected in a wild bird in Australia, and the second mardivirus to be found in a biopsy of an avian cutaneous papilloma. The second virus sequence was a complete sequence of a hepadnavirus, proposed as parrot hepatitis B genotype H (PHBV-H). PHBV-H is the first hepadnavirus to be detected in a wild psittacine bird in Australia. Whether other similar viruses are circulating in wild birds in Australia and whether either of these viruses play a role in the development of the plantar papilloma will require testing of biopsies from similar lesions and normal skin from other wild psittacine birds.


Assuntos
Alphaherpesvirinae , Avihepadnavirus , Doenças das Aves , Herpesviridae , Papiloma , Papagaios , Animais , Herpesviridae/genética , Vírus Oncogênicos , Papiloma/veterinária , Poliésteres
4.
Curr Opin Virol ; 62: 101361, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37672874

RESUMO

Microtubule transport and nuclear import are functionally connected, and the nuclear pore complex (NPC) can interact with microtubule motors. For several alphaherpesvirus proteins, nuclear localization signals (NLSs) and their interactions with specific importin-α proteins have been characterized. Here, we review recent insights on the roles of microtubule motors, capsid-associated NLSs, and importin-α proteins for capsid transport, capsid docking to NPCs, and genome release into the nucleoplasm, as well as the role of importins for nuclear viral transcription, replication, capsid assembly, genome packaging, and nuclear capsid egress. Moreover, importin-α proteins exert antiviral effects by promoting the nuclear import of transcription factors inducing the expression of interferons (IFN), cytokines, and IFN-stimulated genes, and the IFN-inducible MxB restricts capsid docking to NPCs.


Assuntos
Alphaherpesvirinae , Herpes Simples , Humanos , Carioferinas , alfa Carioferinas/genética , Poro Nuclear , Proteínas do Capsídeo
5.
J Vet Diagn Invest ; 35(5): 554-558, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37408504

RESUMO

Herpesviruses can be significant reptile pathogens. Herpesviral infection in a wild-caught, male spider tortoise (Pyxis arachnoides) under human care was detected during a routine wellness examination prior to transition between zoologic organizations. The tortoise had no clinical signs of illness. Oral swabs obtained during a physical examination as part of pre-shipment risk mitigation for infectious disease were submitted for consensus herpesvirus PCR assay and sequencing. Based on comparative sequence analysis, the novel herpesvirus identified is a member of the subfamily Alphaherpesvirinae. Studies of herpesviral phylogeny in chelonian species support branching patterns of turtle herpesviruses that closely mirror those of their hosts. The symmetry of these patterns is suggestive of close codivergence of turtle herpesviruses with their host species. The distribution of these viruses in both tortoises and emydids suggests a phylogenetic duplication event in the herpesviruses after host divergence of the Pleurodira and basal to the divergence of Americhelydia. Herpesviral infections have been documented to cause higher morbidity when introduced to aberrant host species, and significant consideration must be given to the presence of herpesviruses in the management of tortoise collections, particularly collections that include various species of testudines.


Assuntos
Alphaherpesvirinae , Infecções por Herpesviridae , Herpesviridae , Tartarugas , Humanos , Masculino , Animais , Filogenia , Madagáscar , Herpesviridae/genética , Infecções por Herpesviridae/veterinária
6.
Dis Aquat Organ ; 154: 131-139, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37410432

RESUMO

We report the detection of an alphaherpesvirus infecting an adult female narwhal Monodon monoceros captured live during a tagging project in Tremblay Sound, Nunavut, Canada, in August 2018. The individual had 2 open wounds on the dorsum but appeared in good overall health. A blowhole swab was collected, and subsequent virus isolation was performed using a beluga whale primary cell line. Non-syncytial cytopathic effects were seen, in contrast to syncytial cytopathic effects described for monodontid alphaherpesvirus 1 (MoAHV1) isolates previously recovered from beluga whales Delphinapterus leucas from Alaska, USA, and the Northwest Territories, Canada. Next-generation sequencing was performed on a sequencing library generated from the DNA of the viral isolate and the analysis of the assembled contigs permitted the recovery of 6 genes, conserved in all members of the family Orthoherpesviridae, for downstream genetic and phylogenetic analyses. BLASTN (basic local alignment search tool, searching nucleotide databases using a nucleotide query) analyses of the narwhal herpesvirus conserved genes showed the highest nucleotide identities to MoAHV1, ranging between 88.5 and 96.8%. A maximum likelihood phylogenetic analysis based on concatenation of the 6 conserved herpesviruses amino acid alignments revealed the narwhal herpesvirus (NHV) to be the closest relative to MoAHV1, forming a clade within the subfamily Alphaherpesvirinae, genus Varicellovirus. NHV is the first alphaherpesvirus characterized from a narwhal and represents a new viral species, which we propose to be known as Varicellovirus monodontidalpha2. Further research is needed to determine the prevalence and potential clinical impacts of this alphaherpesvirus infection in narwhals.


Assuntos
Alphaherpesvirinae , Herpesviridae , Feminino , Animais , Baleias , Filogenia , Canadá/epidemiologia , Alphaherpesvirinae/genética , Regiões Árticas , Nucleotídeos/metabolismo
7.
Vet Res ; 54(1): 44, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37277883

RESUMO

Bubaline alphaherpesvirus 1 (BuHV-1) is a pathogen of water buffaloes responsible for economic loss worldwide. MicroRNAs (miRNAs) regulate gene expression produced by alphaherpesviruses and hosts. This study aimed at (a) unravelling the ability of BuHV-1 to produce miRNAs, including hv1-miR-B6, hv1-miR-B8, hv1-miR-B9; (b) measuring the host immune-related miRNAs associated to herpesvirus infection, including miR-210-3p, miR-490-3p, miR-17-5p, miR-148a-3p, miR-338-3p, miR-370-3p, by RT-qPCR; (c) identifying candidate markers of infection by receiver-operating characteristic (ROC) curves; (d) exploiting the biological functions by pathway enrichment analyses. Five water buffaloes BuHV-1 and Bovine alphaherpesvirus 1 (BoHV-1) free were immunized against Infectious Bovine Rhinotracheitis (IBR). Five additional water buffaloes served as negative controls. All animals were challenged with a virulent wild-type (wt) BuHV-1 via the intranasal route 120 days after the first vaccination. Nasal swabs were obtained at days (d) 0, 2, 4, 7, 10, 15, 30, and 63 post-challenge (pc). The animals of both groups shed wt BuHV-1 up to d7 pc. Results demonstrated that (a) miRNAs produced by the host and BuHV-1 could be efficiently quantified in the nasal secretion up to d63 and d15 pc, respectively; b) the levels of host and BuHV-1 miRNAs are different between vaccinated and control buffaloes; c) miR-370-3p discriminated vaccinated and control animals; d) host immune-related miRNAs may modulate genes involved in the cell adhesion pathway of the neuronal and immune system. Overall, the present study provides evidence that miRNAs can be detected in nasal secretions of water buffaloes and that their expression is modulated by BuHV-1.


Assuntos
Alphaherpesvirinae , Doenças dos Bovinos , Infecções por Herpesviridae , Herpesvirus Bovino 1 , MicroRNAs , Bovinos , Animais , Búfalos , MicroRNAs/genética , Herpesvirus Bovino 1/fisiologia , Infecções por Herpesviridae/veterinária , Perfilação da Expressão Gênica/veterinária
8.
J Virol ; 97(5): e0024223, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37154764

RESUMO

pUL51 is a minor tegument protein important for viral assembly and cell-to-cell spread (CCS) but dispensable for replication in cell culture of all Herpesviruses for which its role has been investigated. Here, we show that pUL51 is essential for the growth of Marek's disease virus, an oncogenic alphaherpesvirus of chickens that is strictly cell-associated in cell culture. MDV pUL51 localized to the Golgi apparatus of infected primary skin fibroblasts, as described for other Herpesviruses. However, the protein was also observed at the surface of lipid droplets in infected chicken keratinocytes, hinting at a possible role of this compartment for viral assembly in the unique cell type involved in MDV shedding in vivo. Deletion of the C-terminal half of pUL51 or fusion of GFP to either the N- or C-terminus were sufficient to disable the protein's essential function(s). However, a virus with a TAP domain fused at the C-terminus of pUL51 was capable of replication in cell culture, albeit with viral spread reduced by 35% and no localization to lipid droplets. In vivo, we observed that although the replication of this virus was moderately impacted, its pathogenesis was strongly impaired. This study describes for the first time the essential role of pUL51 in the biology of a herpesvirus, its association to lipid droplets in a relevant cell type, and its unsuspected role in the pathogenesis of a herpesvirus in its natural host. IMPORTANCE Viruses usually spread from cell to cell through two mechanisms: cell-released virus and/or cell-to-cell spread (CCS). The molecular determinants of CCS and their importance in the biology of viruses during infection of their natural host are unclear. Marek's disease virus (MDV) is a deadly and highly contagious herpesvirus of chickens that produces no cell-free particles in vitro, and therefore, spreads only through CCS in cell culture. Here, we show that viral protein pUL51, an important factor for CCS of Herpesviruses, is essential for MDV growth in vitro. We demonstrate that the fusion of a large tag at the C-terminus of the protein is sufficient to moderately impair viral replication in vivo and almost completely abolish pathogenesis while only slightly reducing viral growth in vitro. This study thus uncovers a role for pUL51 associated with virulence, linked to its C-terminal half, and possibly independent of its essential functions in CCS.


Assuntos
Alphaherpesvirinae , Herpesviridae , Herpesvirus Galináceo 2 , Doença de Marek , Animais , Galinhas , Herpesvirus Galináceo 2/genética , Herpesviridae/metabolismo , Alphaherpesvirinae/metabolismo , Replicação Viral
9.
J Virol ; 97(3): e0013423, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36916938

RESUMO

Type I interferon (IFN-I) response plays a prominent role in innate immunity, which is frequently modulated during viral infection. Here, we report DNA methylation regulator UHRF1 as a potent negative regulator of IFN-I induction during alphaherpesvirus infection, whereas the viruses in turn regulates the transcriptional expression of UHRF1. Knockdown of UHRF1 in cells significantly increases interferon-ß (IFN-ß)-mediated gene transcription and viral inhibition against herpes simplex virus 1 (HSV1) and pseudorabies virus (PRV). Mechanistically, UHRF1 deficiency promotes IFN-I production by triggering dsRNA-sensing receptor RIG-I and activating IRF3 phosphorylation. Knockdown of UHRF1 in cells upregulates the accumulation of double-stranded RNA (dsRNA), including host endogenous retroviral sequence (ERV) transcripts, while the treatment of RNase III, known to specifically digest dsRNA, prevents IFN-ß induction by siUHRF1. Furthermore, the double-knockdown assay of UHRF1 and DNA methyltransferase DNMT1 suggests that siUHRF1-mediated DNA demethylation may play an important role in dsRNA accumulation and subsequently IFN induction. These findings establish the essential role of UHRF1 in IFN-I-induced antiviral immunity and reveal UHRF1 as a potential antivrial target. IMPORTANCE Alphaherpesviruses can establish lifelong infections and cause many diseases in humans and animals, which rely partly on their interaction with IFN-mediated innate immune response. Using alphaherpesviruses PRV and HSV-1 as models, we identified an essential role of DNA methylation regulator UHRF1 in IFN-mediated immunity against virus replication, which unravels a novel mechanism employed by epigenetic factor to control IFN-mediated antiviral immune response and highlight UHRF1, which might be a potential target for antiviral drug development.


Assuntos
Herpesvirus Humano 1 , Herpesvirus Suídeo 1 , Interferon Tipo I , Animais , Humanos , Antivirais , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Expressão Gênica , Herpesvirus Humano 1/genética , Herpesvirus Suídeo 1/genética , Imunidade Inata , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Interferon Tipo I/metabolismo , Interferon beta/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Alphaherpesvirinae , Receptores Imunológicos/imunologia
10.
J Wildl Dis ; 59(2): 363-366, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36989512

RESUMO

Fibropapillomatosis is a debilitating neoplastic disease associated with Chelonid alphaherpesvirus 5 (ChHV5) infection. We detected the Atlantic variant of ChHV5 associated with a fibropapilloma in a green turtle (Chelonia mydas) found stranded on the western coast of Rio de la Plata, Argentina. This is the southernmost registered case for the southwestern Atlantic.


Assuntos
Alphaherpesvirinae , Infecções por Herpesviridae , Herpesviridae , Neoplasias Cutâneas , Tartarugas , Animais , Neoplasias Cutâneas/veterinária , Infecções por Herpesviridae/epidemiologia , Infecções por Herpesviridae/veterinária
11.
Braz J Microbiol ; 54(2): 1231-1237, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36897516

RESUMO

Water buffaloes (Bubalus bubalis) have been introduced in many regions of the world as a source of animal protein. In many instances, bubaline cattle are reared close to or mixed with bovine or zebuine cattle. However, little is known about infectious diseases of bubaline and the interactions that may arise involving the microbiota of those species. Alphaherpesviruses of ruminants (bovine alphaherpesviruses types 1 and 5, BoHV-1, BoHV-5; bubaline alphaherpesvirus 1, BuHV-1) are highly cross-reactive in serological assays performed with bovine or zebuine sera. However, the profile of reactivity of bubaline cattle sera to alphaherpesviruses remains unknown. As such, it is not known which virus strain (or strains) would be most appropriate to be used as the challenge virus in the laboratory in search for alphaherpesvirus-neutralizing antibodies. In this study, the profile of neutralizing antibodies to alphaherpesviruses in bubaline sera was determined against different types/subtypes of bovine and bubaline alphaherpesviruses. Sera (n=339) were screened in a 24-h serum neutralization test (SN) against 100 TCID50 of each of the challenge viruses. From those, 159 (46.9 %) neutralized at least one of the viruses assayed; 131 (38.6%) sera neutralized the three viral strains used for screening. The viral strain that was neutralized by the largest number of sera was BoHV-5b A663 (149/159; 93.7%). A few sera neutralized only one of the challenge viruses: four sera neutralized BoHV-1 LA only; another neutralized BoHV-5 A663 only and four others neutralized BuHV-1 b6 only. SN testing with two additional strains gave rise to similar results, where maximum sensitivity (defined here as the largest number of sera that neutralized the challenge viruses) was obtained by adding positive results attained with three of the challenge strains. Differences in neutralizing antibody titers were not significant to allow inferences on which would be the most likely virus that induced the antibody responses detected here.


Assuntos
Alphaherpesvirinae , Infecções por Herpesviridae , Herpesvirus Bovino 1 , Bovinos , Animais , Búfalos , Anticorpos Neutralizantes , Infecções por Herpesviridae/veterinária , Anticorpos Antivirais
12.
PLoS Pathog ; 19(2): e1010959, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36749787

RESUMO

Conserved Herpesviridae protein kinases (CHPK) are conserved among all members of the Herpesviridae. Herpesviruses lacking CHPK propagate in cell culture at varying degrees, depending on the virus and cell culture system. CHPK is dispensable for Marek's disease herpesvirus (MDV) replication in cell culture and experimental infection in chickens; however, CHPK-particularly its kinase activity-is essential for horizontal transmission in chickens, also known as natural infection. To address the importance of CHPK during natural infection in chickens, we used liquid chromatography-tandem mass spectrometry (LC-MS/MS) based proteomics of samples collected from live chickens. Comparing modification of viral proteins in feather follicle epithelial (FFE) cells infected with wildtype or a CHPK-null virus, we identified the US10 protein (pUS10) as a potential target for CHPK in vivo. When expression of pUS10 was evaluated in cell culture and in FFE skin cells during in vivo infection, pUS10 was severely reduced or abrogated in cells infected with CHPK mutant or CHPK-null viruses, respectively, indicating a potential role for pUS10 in transmission. To test this hypothesis, US10 was deleted from the MDV genome, and the reconstituted virus was tested for replication, horizontal transmission, and disease induction. Our results showed that removal of US10 had no effect on the ability of MDV to transmit in experimentally infected chickens, but disease induction in naturally infected chickens was significantly reduced. These results show CHPK is necessary for pUS10 expression both in cell culture and in the host, and pUS10 is important for disease induction during natural infection.


Assuntos
Alphaherpesvirinae , Herpesviridae , Doença de Marek , Animais , Proteínas Quinases/metabolismo , Cromatografia Líquida , Galinhas , Espectrometria de Massas em Tandem , Herpesviridae/metabolismo , Alphaherpesvirinae/metabolismo , Proteínas Virais/metabolismo , Vírus Oncogênicos
13.
Vet Microbiol ; 279: 109671, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36731190

RESUMO

Duck plague virus (DPV), also known as anatid herpesvirus, is a double-stranded DNA virus and a member of α herpesvirus. DPV pUL15 is a homolog of herpes simplex virus 1 (HSV-1) pUL15, a terminase large subunit, and plays a key role in the cleavage and packaging of the viral concatemeric genome. However, the sequence similarity between DPV pUL15 and its homologs is low, and it is not sure if DPV pUL15 has the potential to cleave the concatemeric genome as same as its homologs. Here, we expressed the C terminal domain of DPV pUL15 to explore the nuclease function of DPV pUL15. The main results showed that (Ⅰ) DPV pUL15 C-terminal domain possesses nonspecific nuclease activity and lacks the DNA binding ability. (Ⅱ) DPV pUL15 nuclease activity needs to coordinate with divalent metal ions and tends to be more active at high temperatures. (Ⅲ) Even though the structure of DPV pUL15 nuclease domain is relatively conserved, the mutations of conserved amino acids on the nuclease domain do not significantly inhibit the nuclease activity.


Assuntos
Alphaherpesvirinae , Herpesviridae , Herpesvirus Humano 1 , Animais , Patos , Herpesvirus Humano 1/genética , Herpesviridae/genética
14.
BMC Vet Res ; 19(1): 28, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36721143

RESUMO

BACKGROUND: Bovine herpes virus (BoHV 1 and BoHV-5) are the causative agents of infectious bovine rhinotracheitis (IBR). IBR is responsible for important economic losses in the cattle industry. The envelope glycoprotein B (gB) is essential for BoHV infection of cattle's upper respiratory and genital tract. gB is one of the main candidate antigens for a potential recombinant vaccine since it induces a strong and persistent immune response. RESULTS: In this study, gB of BoHV-1 and BoHV-5 was characterized in terms of function, structure, and antigenicity through bioinformatics tools. gB showed conserved sequence and structure, so, both domains named PH Like 1 and 2 domains of each virus were selected for the design of a bivalent vaccine candidate. The immunoinformatic study showed that these two domains have epitopes recognizable by B and T lymphocytes, followed by this, the cDNA domains from BoHV-1/5 gB (Domains-gB) were transformed into the yeast Komagataella phaffii GS115 (previously known as Pichia pastoris). A recombinant protein with molecular weight of about 110 kDa was obtained from the culture media. The vaccine candidate protein (Domains-gB) was recognized by a monoclonal antibody from a commercial ELISA kit used for IBR diagnostic, which may suggest that the epitopes are conserved of the entire infectious virus. CONCLUSION: Overall, it was shown that the recombinant domains of BoHV-1/5 gB have antigenic and immunogenic properties similar to the native gB. This vaccine candidate is promising to be used in future studies to assess its immunogenicity in an animal model.


Assuntos
Alphaherpesvirinae , Doenças dos Bovinos , Rinotraqueíte Infecciosa Bovina , Animais , Bovinos , Epitopos , Anticorpos Monoclonais , Biologia Computacional , Rinotraqueíte Infecciosa Bovina/prevenção & controle , Glicoproteínas , Doenças dos Bovinos/prevenção & controle
15.
Acta Vet Scand ; 65(1): 8, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36814283

RESUMO

BACKGROUND: Reindeer herding and husbandry is a traditional and important livelihood in Fennoscandia, and about 200,000 semi-domesticated reindeer are herded in Finland. Climatic changes, leading to ice-locked winter pastures, and encroachment of pasture-land have led to changes in reindeer husbandry, increasing the extent of supplementary or full ration feeding, which has become very common in Finland. Keeping reindeer in corrals or gathering them at permanent feeding sites will increase nose-to-nose contact between animals and they may be exposed to poor hygienic conditions. This may impact the epidemiology of infectious diseases, such as viral infections. The aim of this study was to investigate Finnish semi-domesticated reindeer for exposure to viral pathogens. Blood samples were collected from 596 reindeer (358 calves, 238 adults) in 2015, from nine reindeer slaughterhouses, representing most of the reindeer herding regions in Finland. Plasma samples were investigated for antibodies against a selection of known and potential reindeer viral pathogens by using enzyme linked immunosorbent assays (ELISA). RESULTS: The screening suggested that alphaherpesvirus and gammaherpesvirus (malignant catarrhal fever virus group; MCFV) were enzootic in the reindeer population, with a seroprevalence of 46.5% (range at slaughterhouse level 28.6-64.3%) and 29.0% (range 3.5-62.2%), respectively. Whereas the seroprevalence was significantly higher for alphaherpesvirus among adult reindeer (91.2%) as compared to calves (16.8%), no age difference was revealed for antibodies against gammaherpesvirus. For alphaherpesvirus, the seroprevalence in the northernmost region, having the highest animal density (animals/km2), was significantly higher (55.6%) as compared to the southernmost region (36.2%), whereas the seroprevalence pattern for gammaherpesvirus indicated the opposite, with 8.1% in the north and 50.0% in the south. Four reindeer (0.7%) had antibodies against Pestivirus, whereas no antibodies were detected against Bluetongue virus or Schmallenbergvirus. CONCLUSIONS: Alphaherpesvirus and gammaherpesvirus (MCFV) seems to be enzootic in the Finnish reindeer population, similar to other reindeer herds in Fennoscandia, whereas the exposure to Pestivirus was low compared to findings in Norway and Sweden. The ongoing changes in the reindeer herding industry necessitate knowledge on reindeer health and diseases that may impact animal welfare and health of reindeer as well as the economy of the reindeer herding industry.


Assuntos
Alphaherpesvirinae , Infecções por Herpesviridae , Rena , Animais , Finlândia/epidemiologia , Infecções por Herpesviridae/veterinária , Estudos Soroepidemiológicos , Tundra
16.
Viruses ; 15(2)2023 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-36851530

RESUMO

A winter population of around 4000-5000 wild Eurasian tundra reindeer (Rangifer t. tarandus) in the eastern part of Iceland represents descendants from 35 semi-domesticated reindeer imported to Iceland from Finnmark county, Norway, in 1787. While previous studies have indicated that they host fewer parasite species as compared to reindeer in Fennoscandia, little information exists on their exposure to reindeer viral pathogens. The aim of this study was to investigate blood from hunted reindeer for antibodies against alphaherpesvirus and gammaherpesviruses (malignant catarrhal fever viruses, MCFV), pestivirus, bluetongue virus, and Schmallenberg virus, and to investigate nasal and oral mucosal membrane swab samples for the presence of parapoxvirus-specific DNA. Blood samples collected during the hunting seasons in 2017 (n = 40), 2018 (n = 103), and 2019 (n = 138) were tested for viral antibodies using enzyme-linked immunosorbent assays (ELISA). Screening for parapoxvirus DNA was conducted on swab samples from 181 reindeer by polymerase chain reaction (PCR), targeting the B2L and GIF genes. Antibodies against pestivirus were detected in two animals from 2017, and antibodies against MCFV were detected in two reindeer from 2018. No antibodies were detected against the other viruses tested. Parapoxvirus-specific DNA was detected in nasal swab samples from two animals sampled in 2019. This study suggests that the investigated viral infections are either not present or present at a low prevalence only, probably not representing a major health threat to this reindeer population. The lack of exposure to alphaherpesvirus, an enzootic pathogen in most investigated Rangifer populations, was unexpected.


Assuntos
Alphaherpesvirinae , Cervos , Pestivirus , Rena , Viroses , Animais , Islândia/epidemiologia , Anticorpos Antivirais , Vírus Oncogênicos , DNA
17.
Viruses ; 15(2)2023 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-36851584

RESUMO

Pseudorabies virus (PRV) is the pathogen of pseudorabies (PR), which belongs to the alpha herpesvirus subfamily with a double stranded DNA genome encoding approximately 70 proteins. PRV has many non-essential regions for replication, has a strong capacity to accommodate foreign genes, and more areas for genetic modification. PRV is an ideal vaccine vector, and multivalent live virus-vectored vaccines can be developed using the gene-deleted PRV. The immune system continues to be stimulated by the gene-deleted PRVs and maintain a long immunity lasting more than 4 months. Here, we provide a brief overview of the biology of PRV, recombinant PRV construction methodology, the technology platform for efficiently constructing recombinant PRV, and the applications of recombinant PRV in vaccine development. This review summarizes the latest information on PRV usage in vaccine development against swine infectious diseases, and it offers novel perspectives for advancing preventive medicine through vaccinology.


Assuntos
Alphaherpesvirinae , Doenças Transmissíveis , Herpesvirus Suídeo 1 , Orthopoxvirus , Pseudorraiva , Animais , Suínos , Pseudorraiva/prevenção & controle , Herpesvirus Suídeo 1/genética , Desenvolvimento de Vacinas , Vacinas Combinadas
18.
J Virol ; 97(1): e0157722, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36598202

RESUMO

Duck plague virus (DPV) is a high-morbidity fowl alphaherpesvirus that causes septicemic lesions in various organs. Most DPV genes are conserved among herpesviruses, while a few are specific to fowl herpesviruses, including the LORF3 gene, for which there is currently no literature describing its biological properties and functions. This study first addressed whether the LORF3 protein is expressed by making specific polyclonal antibodies. We could demonstrate that DPV LORF3 is an early gene and encodes a protein involved in virion assembly, mainly localized in the nucleus of DPV-infected DEF cells. To investigate the role of this novel LORF3 protein in DPV pathogenesis, we generated a recombinant virus that lacks expression of the LORF3 protein. Our data revealed that the LORF3 protein is not essential for viral replication but contributes to DPV replication in vitro and in vivo and promotes duck plague disease morbidity and mortality. Interestingly, deletion of the LORF3 protein abolished thymus atrophy in DPV-vaccinated ducks. In conclusion, this study revealed the expression of avian herpesviruses-specific genes and unraveled the role of the early protein LORF3 in the pathogenesis of DPV. IMPORTANCE DPV is a highly lethal alphaherpesvirus that causes duck plague in birds of the order Anseriformes. The virus has caused huge economic losses to the poultry industry due to high morbidity and mortality and the cost of vaccination. DPV encodes 78 open reading frames (ORFs), and these genes are involved in various processes of the viral life cycle. Functional characterization of DPV genes is important for understanding the complex viral life cycle and DPV pathogenesis. Here, we identified a novel protein encoded by LORF3, and our data suggest that the LORF3 protein is involved in the occurrence and development of duck plague.


Assuntos
Alphaherpesvirinae , Infecções por Herpesviridae , Animais , Alphaherpesvirinae/genética , Alphaherpesvirinae/metabolismo , Alphaherpesvirinae/patogenicidade , Patos , Infecções por Herpesviridae/veterinária , Infecções por Herpesviridae/virologia , Células Cultivadas
19.
J Vet Diagn Invest ; 35(1): 67-71, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36366727

RESUMO

Four Indian ringneck parakeets (Psittacula krameri; syn. ringneck parrots or rose-ringed parakeets) were submitted by 2 private owners for autopsy following a history of dyspnea and death. Gross findings were varied and included thickening of the left caudal thoracic air sac, white spots throughout the liver, mild dilation of the proventriculus, coelomic effusion, splenomegaly, and pulmonary congestion and edema. Microscopically, the submitted parakeets had significant lesions in the lower respiratory tract, including necrotizing bronchitis, parabronchitis, and interstitial pneumonia with numerous syncytia containing eosinophilic intranuclear inclusions. Electron microscopy of the lungs was compatible with a herpesviral infection and Psittacid alphaherpesvirus 5 (PsAHV5) was detected via PCR and sequencing. There has been inconsistent terminology used with Psittacid alphaherpesvirus 3 and PsAHV5; we attempt here to clarify the reported history of these viruses.


Assuntos
Alphaherpesvirinae , Infecções por Herpesviridae , Papagaios , Psittacula , Animais , Infecções por Herpesviridae/veterinária , Periquitos
20.
J Virol ; 96(24): e0157822, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36448809

RESUMO

Cyclic GMP-AMP synthase (cGAS), a key DNA sensor, detects cytosolic viral DNA and activates the adaptor protein stimulator of interferon genes (STING) to initiate interferon (IFN) production and host innate antiviral responses. Duck enteritis virus (DEV) is a duck alphaherpesvirus that causes an acute and contagious disease with high mortality in waterfowl. In the present study, we found that DEV inhibits host innate immune responses during the late phase of viral infection. Furthermore, we screened DEV proteins for their ability to inhibit the cGAS-STING DNA-sensing pathway and identified multiple viral proteins, including UL41, US3, UL28, UL53, and UL24, which block IFN-ß activation through this pathway. The DEV tegument protein UL41, which exhibited the strongest inhibitory effect, selectively downregulated the expression of interferon regulatory factor 7 (IRF7) by reducing its mRNA accumulation, thereby inhibiting the DNA-sensing pathway. Ectopic expression of UL41 markedly reduced viral DNA-triggered IFN-ß production and promoted viral replication, whereas deficiency of UL41 in the context of DEV infection increased the IFN-ß response to DEV and suppressed viral replication. In addition, ectopic expression of IRF7 inhibited the replication of the UL41-deficient virus, whereas IRF7 knockdown facilitated its replication. This study is the first report identifying multiple viral proteins encoded by a duck DNA virus, which inhibit the cGAS-STING DNA-sensing pathway. These findings expand our knowledge of DNA sensing in ducks and reveal a mechanism through which DEV antagonizes the host innate immune response. IMPORTANCE Duck enteritis virus (DEV) is a duck alphaherpesvirus that causes an acute and contagious disease with high mortality, resulting in substantial economic losses in the commercial waterfowl industry. The evasion of DNA-sensing pathway-mediated antiviral innate immunity is essential for the persistent infection and replication of many DNA viruses. However, the mechanisms used by DEV to modulate the DNA-sensing pathway remain poorly understood. In the present study, we found that DEV encodes multiple viral proteins to inhibit the cGAS-STING DNA-sensing pathway. The DEV tegument protein UL41 selectively diminished the accumulation of interferon regulatory factor 7 (IRF7) mRNA, thereby inhibiting the DNA-sensing pathway. Loss of UL41 potently enhanced the IFN-ß response to DEV and impaired viral replication in ducks. These findings provide insights into the host-virus interaction during DEV infection and help develop new live attenuated vaccines against DEV.


Assuntos
Alphaherpesvirinae , Patos , Imunidade Inata , Nucleotidiltransferases , Proteínas Virais , Animais , DNA Viral/genética , DNA Viral/metabolismo , Enterite/imunologia , Enterite/virologia , Imunidade Inata/genética , Fator Regulador 7 de Interferon/genética , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Transdução de Sinais , Proteínas Virais/genética , Proteínas Virais/metabolismo , Evasão da Resposta Imune/genética , Alphaherpesvirinae/genética , Alphaherpesvirinae/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...